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ABSTRACT

The objectives of this study were to determine if forest types

could be delineated and whether stress could be detected using

automatic techniques. We have shown that automatic photointer-

pretation is feasible for delineating forest species; there

was not enough plant stress in the area to evaluate this aspect.

We have also evaluated the use of texture for improving class-

ification accuracy. In general, the classification accuracy

with 5 or 6 classes ranges from 70 to 90%. Since chance perfor-

mance is 16 to 20%, one can conclude that automatic photointer-

pretation is feasible. These performance figures are typical

for distinguishing forest types to conifers and hardwoods.

Using density alone for features, the classification accuracy

for 5 classes is 70 to 75%. Adding texture improves this

accuracy about 10 to 15%. Finer distinctions introduced higher

errors, for example breaking conifers into highland vs. lowland

and high density vs. low density results in an accuracy for these

four classes of 69.7%. With four classes, chance would result

in an accuracy of 25%, thus the improvement is not as striking.
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Contract NAS5-21866

MMC 647

Introduction

The objective of this program is to evaluate the feasibility
of using automatic interpretation techniques to map plant
species and plant stress. In particular, Forest type map-
ping in Northern Minnesota has been selected as the problem
to be addressed. We have worked closely with the School of
Forestry at the University of Minnesota who has supplied
us with ground truth in the area.

In this program we have used bulk ERTS photos for identifying
the study areas and for preliminary evaluation of the data
quality. However, computerized photo interpretation has been
performed using the digital data only. The features generated
from the data have been both multispectral and spatial. An
evaluation of the usefulness of both types of features has
been made. In addition, two seasonal coverages have been
used to construct the feature vector and the performance
achieved from multi-temporal coverage is compared with a
single coverage.

Two test sites have been selected for this study based on the
first available cloud-free coverage, adequate size and type
of classes, and availability of ground truth. The University
of Minnesota School of Forestry test site at Cloquet was
selected as the pilot site for evaluating the spectral and
texture algorithms. Later, the Chippewa National Forest was
analyzed using multispectral features only in an effort to
deliniate a larger area which is also a separate management
unit. It is hoped that the availability of a thematic map
of this area will serve to indicate the usefulness of remote
sensing as an inventory and change detection tool and promote
user.involvement. To this end, several meetings have been
held with personnel from the Regional Forest Center of Mil-
waukee, the Superior National Forest and Chippewa National
Forest.
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The performance of the automatic classifier ranges from 70%
to 990% depending on the number of classes; the number and
complexity of the features; and finally, the similarity
between the training and testing samples. The results of
the automatic classifier are available in two forms. First,
a confusion matrix is produced during the training procedures
which shows the correct classifications and misclassifications
for all samples in the training set. Secondly, a thematic
map is generated for an area,which must be similar to the
training area,based on the set of weights obtained in the
training procedure. This delineation map can be visually
compared with the ground truth map to obtain an evaluation
of performance.

A comparison between the performance we achieved with the
automatic classifier can be made with manual photointerpretation
performed by experienced photointerpreters at the University
of Minnesota School of Forestry, Institute of Agriculture
Remote Sensing Laboratory. Both studies used portions of the
Chippewa National Forest but not identical sites. Automatic
classification was performed on six classes. A classification
accuracy of 72.7% was achieved testing on the training set.
Seven classes were manually classified by two photointerpre-
ters with an accuracy of 45% and 41% using a color combination
of bands 5 and 7 from the October coverage. However, it should
be noted that the manual photointerpretation performance was
based on the complete data set whereas the automatic class-
ification performance was based on the training data only,
i.e., the data contained no mixture of classes and a good
representation of the various classes.

Experiment Design

Several candidate test sites were considered at the start
of this study. These included the Superior National Forest,
Chippewa National Forest, Itasca County, Koochiching County
and Carlton County. All of these areas are heavily wooded.

Cloquet Test Site:

One of the first cloud free images received covered Carlton
County (1075-16312 October 6, 1972). Since the Cloquet Forest
test site is in the area, we decided to use this image for
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our pilot studies. The Cloquet Forest site is located about
25 miles west of Duluth. Ground truth information was provided
by Greg Johnson from the University of Minnesota Institute
of Agriculture Remote Sensing Laboratory located in the College
of Forestry. Since the College's Cloquet Forestry Center, an
experimental forest, is in the midst of this area, much infor-
mation was previously known about the forest types. Spring
1:90,000 panchromatic aerial photographs, numerous field checks,
and previous ground experience in the study area were used by
the interpreters in generating the ground truth map. The
Cloquet area was delineated into five types: conifers, hard-
woods, open, water and city. Five thousand acres, approximately
equally divided into the five classes, were used for training.
We then delineated a total of 24,000 acres based on the train-
ing results.

The relatively small Cloquet area was used to evaluate multi-
spectral and spatial features for automatic classification.
The principal components technique was used to determine the
most effective bands for class separation. In addition, four
texture algorithms were evaluated for distinguishing between
these five classes.

Data Analysis Procedures

Data from the bulk, black and white 70 mm transparencies and
7 track 800 BPI computer compatible tapes (CCT) were used
as the data base. The imagery was used for orientation and
registration, and the digital data was used to perform the
automatic stratification and analysis.

The ERTS digital data of the study area was then reproduced
on film by writing with a digital magnetic tape to film printer
for purposes of registering with ground truth information.
The film output for Band 7 is shown in Figure 1. It provides
an image of the study area containing grid lines corresponding
to record and word on the digital magnetic data tape. Regis-
tration of ground truth with ERTS-A data was accomplished by
recognition of landmarks such as water bodies in-the area.
Registration with ground truth maps was required for both
training and evaluating the automatic classification system
and for producing the stratification output.

-3-



FIGURE I. BAND 7, CLOQUET TEST SITE
1075 - 16312 p. 4



Figure 2. ERTS-A Feature Extraction Procedure
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Once ground truth and ERTS-A data were registered, type
boundaries were encoded in terms of record and word numbers.
From within the type boundaries, 8 x 8 arrays were isolated
to serve as training samples. During training two categories
of features, multispectral and texture, were generated for
a number of 8 x 8 array samples in each class as illustrated
in Figure 2.

The first experiment was run using only spectral features.
An illustration of the separability between the five classes
is shown by the density histograms in Figure 3. The four
sets of histograms were derived from each of the four MSS
bands. Band 4 has a great deal of overlap between classes,
a part of which is due to the banding visible in Figure 1.
Band 7 is excellent for separating water from land and was
usually used for locating lakes for ground truth landmarks.

BAND 4 BAND 5

o- CONIFER °WATER
40-- OPEN GROUND 4-- CONIFER

o-- WATER 6o - CITY
301" HARDWOOD H20 4 20- OPEN

1o- I CITY 10 - V 4 HARDWOOD

0 8 16 24 32 40 0 8 16 24 32 40
INTENSITY INTENSITY

BAND 6 BAND 7

50- 50
WATER

40 WATER HARDWOOD 40 CONIFER
Z-- CITY oI Z 3 HARDWOOD

20-- IPEN

10-'. TO 10- CITY

0 a 16 24 32 40 8 16 24 32 40
INTENSITY INTENSITY

Figure 3. Histograms of Intensity Levels
ERTS 1075-16312
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Two dimensional histograms forthe five classes were also
computed. These indicated high cross correlation between

some pairs of bands for a few classes; however, no con-

sistent conclusions could be drawn.

For texture features, two dimensional Past Walsh, Fast
Fourier, Slant and Karhunen-Loeve Transforms were utilized.

Texture features were computed from an 8 x 8 array represent-

ing approximately 70 ground acres. Texture was also computed
on a 4 x 4 array to determine the effect of array size on

performance. Increasing the array size increases frequency
resolution which increases the classification accuracy.
However, the larger array size also increases the minimum

ground resolution area which can be classified.

Having selected the features to be used and the training set,
a linear discriminant classifier is trained. Briefly, the
classifier algorithm groups each of the features of the
training set around an orthogonal basis vector in a least
mean square sense. The "weight" matrix required to do this
is computed for subsequent application to the input data
during testing and during the generation of overlay maps.
The class to which the input data point belongs is deter-
mined by the distance from the various orthogonal vector
points. A block diagram illustrating the procedures used
for automatic interpretation is shown in Figure 4.
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FIGURE 4. DATA ANALYSIS PROCEDURES
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Feature Selection

Multispectral and spatial features were used for automatic
classification. The multispectral data consisted of the out-
put of the four MSS sensors which are sensitive to .5-.6,
.6-.7, .7-.8 and .8 to 1.1 microns. In addition, an evalua-
tion of five spatial frequency algorithms was made on the
Cloquet test set. These algorithms were the Fourier, Kar-
hunen Loeve, Walsh and Slant transforms.

The spatial features were added in order to include pattern
information. Edges in a picture introduce spatial frequencies
along a line in the complex frequency plan orthogonal to the
edge. High spatial frequencies correspond to sharp edges
and low spatial frequencies correspond to regions of approxi-
mately uniform grey band. Spatial filtering in an image to
detect texture is a natural extension to two dimensions of
the traditional one-dimensional or temporal filtering process
in communication networks.

The Fourier transform, which has been a commonly accepted
tool for computing the frequency components of a temporal
waveform, utilizes sinusoidal orthogonal basis functions.
Digital implementation of the Fourier transform became feasible
for two dimensions with the development by Cooley and Tukey
of the Fast Fourier transform (FFT). The FFT was our first
algorithm used to generate spatial features. Although it is
inferior to the Karhunen Loeve transform in a mean square
error sense, i.e., the first M coefficients of the Karhunen
Loeve transform represent the data more accurately than in
coefficients of the FFT, the FFT can be computed far more
efficiently with N2log2 N computer operations where N is the
dimensionality of the pattern space. A block diagram of the
computations involved in this algorithm is given in the appendix.

The second algorithm used to measure spatial frequency was
the Walsh Hadamard transform. This transformation has a
number of advantages; it can be derived with N2 1og 2 N addi-
tions or subtractions and is binary so that it is amenable to
digital computation. Sequency is proportional to the number
of zero crossings of the Walsh wave analogous to the sinusoidal
frequency descriptor. The development of this algorithm is
given in the appendix
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The third algorithm used for spatial features is the Slant

transform. Pratt, et al., from the University of Southern
California developed a computationally fast Slant algorithm.

One of the advantages of the Slant transform is the compac-
tion of the image energy into a minimum number of basis
vectors which resemble typical horizontal or vertical lines
of an image. Generally lines in an image will have a constant

grey level over considerable length, or linearly vary in
brightness over the length. The orthogonal set of basis
functions in the Slant transform tend to accommodate this
type of data. It also has a sequency property descriptive of

frequency content. In fact, some of the basis vectors of
the Slant transform are identical to the Walsh basis vectors.
Pratt has shown that the mean square error between an image
and the Slant transform is almost as small as that of the
Karhunen Loeve transform. A further description of the algo-
rithm is given in the appendix.

The fourth algorithm applied to the Cloquet test site data
was the Karhunen Loeve expansion. For any data set, this
algorithm minimizes the dimensionality of the feature space
for a given truncation error. This algorithm is a linear
transformation described by an orthogonal matrix. Such a
transformation is equivalent to a rotation of the original
pattern space to a new set of coordinate vectors which are
also orthogonal and which have a number of advantages includ-
ing a reduction of dimensionality. The disadvantages of this
rotational transformation lie in its computational require-
ments. The covariance matrix must be computed and diagonalized.
Finally, the pattern space must be rotated. Because of the
relative difficulty of applying this transformation to a large
data set and large number of classes, this transformation was
only used as a comparative yardstick for measuring the per-
formance of the previous three transforms.

The major portion of this study was directed at automatic
classification using a discrimination rule, which is trained
on a data set. This requires that the ground truth training
set be reasonably accurate and repeatable and furthermore
that registration between the ERTS digital data and ground
truth be accurate, preferably to one pixel.

-10-



The constraint on registration accuracy is due to the require-

ment for correct training data. This requirement is basic to

obtaining a correct set of training weights. The boundary
between classes is determined by grouping samples of the train-

ing classes around the points of a simplex in a least mean

square sense. If there are errors in the training class member-

ship, these boundaries are going to be erroneously distorted

and automatic stratification will likewise be in error.

To allow for misalignment between the ERTS data and ground

truth, the training set samples were extracted from the central

portions of the delineated area. Proximity to the boundaries

between classes was avoided to allow for minor misalignment
in the registration process.

To assure training on accurate ground truth, a trained photo-

interpreter, Mr. Greg Johnson, from the University of Minnesota

Graduate School in Forestry delineated all ground truth. Recent

aerial photos were utilized and ground checks were made for

obtaining an up-to-date ground truth map. An attempt was made

to obtain approximately equal areas of the various classes

for training and testing since an overwhelming predominance
of any of the classes would distort the statistical signifi-

cance of the final decision. However, the automatic classi-

fier decision rule can accomodate for inequalities in expected

probabilities of the various classes.

Automatic Classification Algorithm

The first automatic classification procedure used in this

study is called K-Class. This algorithm was developed at

Honeywell. The theory of this algorithm and optimization
procedures are described below. The program has been coded
for use on the CDC 6600, the XDS 9300 and the DDP 24.

On each computer, the software is broken up into two programs.

The first program (DISPERSION) computes the statistics used
in the second program (KCLASS). On the CDC 6600, which has

adequate memory, these two programs could be combined.

The K-Class algorithm for recognizing classes is a linear

mapping from a measured feature space to a decision space.

-11-



That is

D =BTX (1)

where

T
D = (d , d , ... , d ) is K x 1 decision vector

1 2 K

B = the linear mapping transformation (coefficient matrix)

2 N T
X = ( , ... , X , -1) is a (N+l) x 1 feature vector

The classification procedure is to classify as class i if

d ,d for all j 3 i (2)
i j

A block diagram illustrating the computations envolved in

K-class is shown in Figure 5. The measurements or attribute

inputs are those characteristics of the input signal from

which features are generated. These are the output signals

from the four MSS bands for the various seasons. These mea-

surements are used directly for features. In addition, tex-

ture features are computed from arrays of these measurements

in the feature vector processor.

All of the feature vector samples cannot be mapped into the

same point with one linear mapping since the feature space

is statistical in nature. Thus, the decision space is also

statistical. To find B we then minimize a mean square map-

ping error. For class j

T
e = E[ IB X. - A.I (3)

th

is the mean square mapping error, where A. is the j column
of an orthogonal decision space A. This s orthogonal so as
to make the classes mathematically independent.

Because some classes have more error than others, we choose
the total error to be a weighted mean square mapping error

-12-



1 1X d

m
0--

MEASUREMENT FEATURE
OR ATTRIBUTE DISCRIMINATOR MAXIMUM CLASSIFICATION

INPUTS 0- VECTOR OUTPUT
T SELECTOR

PROCESSOR N B X

-l
dK K

Figure 5. Block Diagram of a Multiclass Signal Classifier

(N features, K classes)



K

e = w.e. (4)
j=1

where w. is a weight to be applied to mean square mapping
error e . The choosing of these weights is done with the

Parameter Iteration Method.

The coefficient matrix B is found by minimizing e with respect
to the elements of B. If the decision space A is the identity
matrix (for simplicity), then

-1
K

B. = w.S. w x.; j=l, ... , K (5)
3 i=l 1 1 j 3

where

S = E[XjXjT]

is the feature dispersion matrix for class j and X. = E[Xj]

is the mean feature vector for class j.

Because the mapping errors and the distributions of the
various classes are different, it would be a coincidence that
the linear boundaries between classes determined by the K-Class
algorithm would be optimum when all the classes are weighted
alike. Thus, we find it necessary to adjust the weights of
each class (see Equation 4) to minimize the total mapping
error. This is performed by the Parameter Iteration Method.

This method does not actually minimize the mapping error, but
does minimize the number of mistakes in the training set of
samples, which is surely directly proportional to the mapping
error. In addition, a cost parameter is included which will
"guard" one class over another. The adjustment of the class
weights is

-14-



1 (t-)
N C c.i m.

(t) (t-(t- t-l) j i=l K (t)
W. W. + NK

T (t-1)/M i=l
T /M

(6)

(t)
where m is the number of samples in class j recognized

ij thas class i on the tth iteration; c.. is the cost of recog-

nizing class j as class i; N. is the number of samples in
3

class j;

K K
T( t )  E Z c.. m..(t)

j=l i=l 13 13

is the total 19 s on iteration t; M is the total number of
samples, and E is the variable step size.

Initially, all weights w. are set equal and the coefficient

matrix of Equation 5 is computed and used to test the train-
ing set of samples. Based on the testing results, Equation 6
is used to adjust the class weights and the new coefficient
matrix is tested. In( e CDC 6600 software this is continued
while the step size C is varied until the step size is 0.
Anytime the testing results are worse than a previous best,
the step size is reduced by a factor 6.

(t)
In the DDP 24 software, equation 6 is not divided by S w

i=1 j

the wj continue to grow in size with each iteration,

while C stays constant. This had the effect of decreasing
the step size gradually as the process continues. The real-
time capability of the DDP-24 allows this procedure, and
allows termination of the iterations at anytime.
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In either case the testing is not done on all the samples
in order to speed up the process. Only the samples within
a band near the classifier boundaries obtained on the first
iteration are used for testing. An example of this is shown
in Figure 6 for three classes in two-dimensional space. The
samples that lie in the shaded area would be saved for test-
ing. The band must be large enough so that the classifier
boundaries would not move outside the band during the itera-
tion process. In the CDC 6600 software, the band width is
constant; in the DDP-24 software, it is proportional to the
statistical distance between classes which is discussed below.

A byproduct of the K-Class algorithm is a distance formula
which measures the statistical distance between classes.
This formula is much like the well-known Divergence measure.
The only difference between the two is that the Divergence
measure is based on the likelihood ratio algorithm, while
the K-Class distance is based on the K-Class algorithm. The
two measures can be derived using the same logical steps.
The formula for the distance between class i and j is:

T -- N
D. =(B-B (Xi-X.) = r (b ik-bjk) (Xik-Xjk)=1J 1. i k=l ik k k

N
Sdij k  (7)

k=l

where D.. is the distance between classes i and j; dik is

the component attributed to feature k.

The d are not independent of each other; however, they can
be a A!d measure of how much feature k adds to the total
distance. There are many different procedures that can be
used to select features with this measure. The programs dis-
cussed here only print out the D.. and the dijk.
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Figure 6. Illustration of Samples Saved for Use in
the Parameter Iteration Method
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The above theory can be used in a systematic approach to deter-
mine a best set of features and the optimum of K-Class bound-

aries for that set of features. Figure 7 presents the flow

of events of this systematic approach.

OPTIMIZE REDUCE N

MEASURE CALCULATE K-CLASS TEST VIA
MEASURE STATISTICS K-CSS ALGORITHM DISTANCE
FEATURES ON N

AND STORE FORMULA

Figure 7. Flow Chart for Optimizing K-Class

In addition to the distance measures between classes indicat-
ing the effectiveness of the various features for distinguish-
ing between classes, K-class also prints out a confusion
matrix. This is an array showing the correct assignments as

rows and the K-class assignments as columns. From this con-
fusion matrix, one can determine the overall performance
as well as the classes causing the greatest problems.

The confusion matrix can also be expressed in percentage
terms. If the class membership is approximately equal,

percentages are easy to interpret, however if the sample
sizes are vastly different, the percentage confusion matrix
can be misleading. For example, one can tolerate large
percentage misclassifications if the class size is small

because only a few actual misclassifications will be involved.

The confusion matrix produced by K-Class are the results
obtained when training and testing on the same data set.
Techniques are available for testing performance on data
that was not used for training. The procedure we used on the

Cloquet Forest Test Site was to cross correlate the ground
truth map with the thematic map generated by K-Class. A
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second procedure, which is easier to implement, selects

points at random from the various classes and determines

the K-Class assignment for these points. This approach

alleviates the precise registration requirement for cross

correlating the ground truth and K-Class output map since

the test points can be selected from within the class bound-

aries away from the borders. The disadvantage of this

approach is that it avoids boundaries where class mixtures

are most likely to occur, thus the confusion matrix is

optimistic.

Thematic Map Generation:

After the weights have been determined in the training
procedure, the production of a thematic map is relatively
easy. A block diagram of a three-class, four-feature dis-

criminator is shown in Figure 8. The class structure and
features must be the same for training and producing the
thematic map. The discrimination process simply involves
a multiplication of the augmented feature vector by a set
of weights for each class. The class assignment is made
by a maximum selector placing the input sample in the class
having the maximum decision number. The sum of the three
decision numbers is unity so that at least one of them is

positive. The relative magnitude of the decision number
serves to indicate the similarity between the sample from
which the features were generated and the training sets for
the various classes.

Clustering Algorithm

The difference between supervised and unsupervised learn-
ing is the presence or absence of an assigned class structure
for data samples. K-Class uses a training set which has
been assigned to classes by a photointerpreter.

In addition to K-Class, we used the ISODATA clustering routine
for the Cloquet test site data. This is unsupervised learn-
ing where parameters of the cluster groups are estimated in
an iterative procedure. The basic procedure for ISODATA is
shown in the block diagram in Figure 9. The procedure
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sketched in Figure 9 does not include the more detailed
provisions for breaking ties, throwing out wild shots and
more sophisticated terminating conditions - it does how-
ever display the essential concept. The result of the
algorithm is a fit to the data of a set of cluster centers
that tends to minimize the sum of the squared distances
of each data print from its closest cluster center.

The output from such a procedure can be used as a thematic
map. The clusters must be labeled as specific classes to
be of any value. This labeling can be on the basis of
similarity between cluster means and the means of known
classes. An alternative approach would be to compare the
ISODATA output thematic map with a ground truth map gen-
erated by a photointerpreter. This comparison is an in-
valuable aid in checking the accuracy of the ground truth
map.

Results:

All of the features used for automatic classification of the
Cloquet Test Site were derived from the four MSS bands of
ERTS-A image 1075-16312. This is an October 6, 1972 cover-
age that is relatively cloud free, however a slight amount
of haze is visible over the test site as seen from the NASA
Color Combined photo. The data was extracted from the 7-
track 800 BPI Computer Compatible tapes.

Multispectral and spatial features were used for automatic
classification. The most effective bands for separating
the five classes listed above were determined by using
the principal components algorithm. MSS band 6 had the
greatest effectiveness followed by MSS 7.

The Cloquet area was delineated into five classes: conifers,
hardwoods, open, water and urban. An estimate of the relative
amounts of the five classes as shown in Figure 10 is listed
in the table below:
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Table I Cloquet Site Class Structure

Conifer 32%

Hardwoods 38%/

Open 20%

Water 5%

Urban 5%

Approximately a thousand acres of each class were used for
training.

Using only multispectral features, the classifier was trained
on data derived from the 8 x 8 sample arrays from each class.
Each training sample consisted of one data point or pixel
of approximately one acre. When the classifier is trained
on a data set, a set of weights are obtained which will
cluster samples of each class around the points of a simplex
in a least mean square sense. If one applies these weights
to the training data, its performance is shown by the con-
fusion matrix in Table II.

Seventy four percent of the data points are correctly classified.
An indication of the types of mistakes made are shown in the
confusion matrix. Notice that confusion is most common where
"city" is called "open", the next most common is "open"
classed as "hardwood" and then "open" classed as "city".
These confusions appear reasonable since the classification was
performed using October data when the hardwoods have shed
their leaves and grasslands are becoming dormant. Therefore,
one would expect open, hardwood and city to look alike. This
is further substantiated by noting the overlaps in the density
histograms in Figure 3.

The performance using only multi-spectral data is shown also
in Figure 11. When using individual data points, i.e., the
4 MSS density bands as features, performance is 74%.
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Table II. Automatic Classification Results Based
on Density - Cloquet Test Site

Sample Automatic Classification Assignments in Percent
Type Size Hardwood Conifer Open Water City

Hardwood 896 80.7 4.1 4.9 1.8 8.5

Conifer 1152 5 80.9 2.3 135.9 2.4

Open 960 20.4 3.5 61.6 .6 13.9

Water 640 10.2 .0 .3 88.6 .9

0 City 640 8.1 6.1 24.1 6.4 55.3

TOTAL 4288 Correct Classification Assignments = 3167

An indication of the effect of adding texture to multi-
spectral features is shown by the curve in Figure 11.
Texture was computed from Band 7 using the Slant Transform.
The Slant Transform as previously described, is an image
transform with a basis vector matched to the gradual bright-
ness changes along an image line which compacts the image
energy to as few of the transform domain samples as possible.
When computed on a 4 x 4 array and added to the density
features, the performance increases to 900%. If computed
on an 8 x 8 array and added to density, the performance
increases to 99/0. These results were obtained by testing on
the training set.

In comparing the texture algorithms, it was found that the
Karhunen Loeve transform provides the highest classification
accuracy. For 8 x 8 arrays, the Slant Transform outper-
forms both the Walsh and Fast Fourier as shown in Figure 12.
As the dimensionality is increased, the Fourier transform
performance is better than either the Walsh or Slant trans-
forms. The Fourier transform asymptomatically approaches
the Karhunen Loeve transform at large dimensions.

After obtaining the training weights on the Cloquet test site,
they were used to generate a delineation map for 24,000
acres including the training areas. The results of the auto-
matic classification are shown in Figure 13. This output
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map can be visually compared with the ground truth map in
Figure 11. In the generation of the thematic map, each input
data print is assigned to a class on the basis of its distance
from the orthagonal vector points, these points are assigned
to the various classes during training. The density levels
in the photo are assigned to the five classes in the follow-
ing manner: hardwood, conifer, urban, open, water (going
from light to dark).

The alternative technique which has been used to group the
unknown data is based on natural clusters. The clustering
technique is very useful for checking ground truth used for
training a classifier. Errors in the training set are very
serious. These become obvious because they do not fall into
natural clusters. Clusters can also be used to make delinea-
tions which can then be assigned to the various ground truth
classes. This is useful when class designations are still
being invented. The Cloquet data from MSS bands 6 and 7
was clustered into eight clusters. These were assigned to
one of four classes based on the distance of the cluster
centers from the means of samples of data from the four
classes. A thematic map of Cloquet is shown in Figure 14
where water is blue, hardwoods-yellow, conifers-green and
open-yellow.

Chippewa National Forest Test Site:

Our next objectives were to extend the procedures evolved
from the small Cloquet test site to a much larger area pro-
viding greater statistical significance. In addition, we
wanted to work with an area that could be isolated as a
management unit to promote user interaction. We also wanted
to find an area with enough samples of a variety of species.
And of course, the final criterion was the availability of
RB-57 over-flights of the area for ground truth and cloud
free ERTS coverages, preferably over a number of seasons.

Considering only the first two constraints, either Superior
National Forest or Chippewa National Forest would suffice.
However, Chippewa has a good mix of hardwoods and conifers
whereas Superior is primarily conifers. Either forest con-
tains over one million acres.

The first cloud free image of the Chippewa National Forest
was obtained on October 7, 1972 (1076-16370). A winter
coverage of the area was recorded on January 5, 1973 (1166-
16373). These two coverages were used as the source of data
for our classification.
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Class Selection

The classes selected for the Chippewa National Forest are
as follows: open, water, marsh, cutover, and twelve forest
types, namely: hardwood, conifer and mixed (containing more
than 25% of both varieties); these three types are further
delineated into upland or lowland and finally into high and
low crown density (above or below 50%). The selection of
these classes was based on the typical class structure used
by foresters in the area. The species included in the broad
cover types are listed below:

Table III Chippewa National Forest
Cover Types

Upland Transition Lowland

Jack pine Balsam fir Black spruce
Red pine Tamarack

Conifer
White spruce Northern white
White pine cedar

Trembling aspen Green ash Black ash
Paper birch American elm Balsam poplar
American basswood Yellow birch Silver maple

Hardwood
Sugar maple
Big tooth aspen
Red oak

Ground truth for the Chippewa National Forest was obtained
from the June 6, 1972 RB-57 overflight. The Color IR RB-57
aerial photos at 1:60,000 were used to delineate approximately
220,000 acres, out of which about 25,000 acres were used for
training on the various classes as shown in Tables IV and V.

The ground truth map is shown in Figure 15. Training §ampl-s
were selected from each of 14 classes as indicated in the
sample size summary table. Again, the training samples were
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Table IV Chippewa National Forest

TRA IN ING
SAMPLE SIZE SUMMARY

CLASS* West Half-CCT2 East Half-CCT3 Total Total #

8x8 4x4 8x8 4x4 8x8 4x4 Pixels

2 10 3 13 208

3 37 1 38 2432

4 13 4 17 1088

5 13 1 14 224

Ah"** 75 1 76 4864

As" 35 1 36 2304

As' 20 20 1280

Bh" 64 27 91 5824

Bh' 3 3 19 6 19 688

Bs" 7 4 11 704

Bs' 6 2 8 128

Mh" 41 3 44 2816

Ms" 28 28 1792

Ms' 7 10 4 7 14 672

TOTAL 25024

* See Table V for Coding Key,
**There were no areas with Ah' or Mh' and very few areas of mixed

residential.
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Table IV Chippewa National Forest - Cont.

TOTALS

Class Pixels % of Training Set

Non forest 3952 15.8

Conifer (A) 8448 33.8

Hardwoods (B) 7344 29.3

Mixed (M) 5280 21.1

Total acreage delineated = 220,425

Training size 11.35% of total
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Table V Chippewa coding

2 OPEN - PASTURE - CLEARCUTS

3 WATER

4 MARSH

5 CUTOVER

8 MIXED RESIDENTIAL (this class was not

included in the training set because of

the lack of samples)

FOREST

TYPE SITE DENS ITY

A-CONIFER h-upland " - >50%
(highland)

B-HDWD s-lowland ' - <50%

(swamp)
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comprised of 8 x 8 and 4 x 4 arrays selected from the central

positions of the areas containing the various classes.

Special attention was given to avoid approaching class bound-

aries for two reasons, first to avoid a maxture of classes

and secondly, to make allowances for s±ight errors in regis-
tration.

Results

Features for automatic classification of the Chippewa Forest
were derived from two cloud-free coverages on October 7,

1972 and January 5, 1973. The ERTS-1 frames are 1076-16370
and 116-16373 respectively.

The first classification runs were performed using density
features only from the October 7, 1972 coverage. An additional

run was made using the October and January data to indicate
the improvement in performance achieved by the use of multi-
temporal data.

Band 4 on both coverages contained a great deal of banding
noise. Because of this extraneous noise,runs were made with
and without this band. When using Bands 5, 6 and 7 from the

October coverage and five classes, the overall performance
was 61.3%. Adding the January coverage from bands 5, 6 and
7 improved the performance to 72.7% as shown in Table VI.

When all eight bands were used from the October and January
coverages, the overall performance dropped to 71.3% indicating
that band 4 does indeed introduce noise and degrades per-
formance.

The Conifer and hardwood classes were broken down into five
classes by sequentially classifying each class into sub-
classes as shown in Figure 16. The classification was per-
formed for bands 5, 6 and 7 from October only and for October
plus the January coverage. The confusion matrices are given
in Table VII.
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Table VI Chippewa National Forest Confusion Matrices

6 FEATURES BANDS 5,6,7 FROM OCT. AND JAN. COVERAGES

Classifier Output

4-
O pen 92.8 2.9 4.3 0.0 0.0 0.0

SMarsh 4.2 45.8 25.8 11.2 8.7 4.2

Cutover 9.2 25.0 60.5 0.0 3.9 1.3

Conifer 0.0 0.1 0.0 87.5 2.7 9.7

o Hardwood 0.4 1.9 2.4 3.8 78.2 13.3

o Mixed 0.0 1.3 1.6 28.1 26.0 43.0

Number Correctly Classified = 72.7%Overall Performance =
Total Number of-Samples

3 FEATURES BANDS 5,6,7 OCTOBER ONLY

RUNS CCNFUSION MATRIX, BY PERCENTS

Classifier Output

Open 94.7 0.0 0.5 0.0 4.8 0.0

Marsh 20.0 12.9 8.7 27.9 25.4 5.0

Cutover 17.1 1.3 44.7 1.3 35.5 0.0

a Conifer 0.2 1.0 1.3 93.9 2.1 1.6

O Hardwood 1.0 12.3 11.8 4.4 68.3 2.2

0 Mixed 2.0 16.3 9.4 44.6 21.4 6.2

Overall Performance = 61.3%

8 FEATURES, ALL FOUR BANDS OCT. AND JAN.

Classifier Output

Open 85.6 7.7 5.3 0.0 1.4 0.0

Marsh 2.1 60.8 16.7 9.6 7.5 3.3

Cutover 5.3 38.2 52.6 1.3 2.6 0.0

Conifer 0.0 0.2 0.0 83.4 2.7 13.6

o Hardwood 0.1 3.5 3.6 3.3 76.6 12.9

Mixed 0.0 2.4 2.0 25.0 28.0 42.6

Overall Performance = 71.3%
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Table VII Detailed Breakdown of Chippewa Forest

CONIFER

October only Oct. plus Jan.
(3 bands) (6 bands)

Classifier Output Classifier Output
Highland/Hi Density 60.5 29.8 9.7 75.8 18.5 5.6

' Lowland/Hi Density 22.0 65.3 12.7 12.3 73.5 14.2
Lowland/Low Density 25.4 23.4 51.2 9.4 15.6 75.0

0
Overall performance Overall performance

60.7% 74.4%

HARDWOODS

October only Oct. plus Jan.
(3 bands) (6 bands)

Classifier Output Classifier Output

A Highland/Hi Density 73.0 6.5 13.7 6.9 80.9 4.9 10.5 3.7
s Highland/Low Density 40.4 17.0 27.4 15.2 34.7 22.2 19.0 24.2

Lowland/Hi Density 7.9 2.6 78.9 10.5 10.5 3.9 70.4 15.1
a Lowland/Low Density 10.0 16.7 50.8 22.5 10.0 10.8 17.5 61.7

0 Overall performance Overall performance

61.6% 69.7%
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A thematic map of the Chippewa National Forest was generated

using 6 density features and sequential classification as shown

in Figure 16. The classes and color assignment are listed in

the following table.

Table VIII Chippewa National Forest Class Structure

Pixels Pixels

Class Symbol Color in West* % in East %

Open and pasture 2 White 18,617 3.61 15,037 3.18

Marsh 4 Yellow 26,731 5.18 32,688 6.91

Green
Cutover 5 Yellow 22,400 4.34 27,172 5.75

Highland Hi Dens. Conif. Ah" Brown 17,025 3.3 7,726 1.63
Green

Lowland Hi Dens. Conif. As" Light 32,669 6.33 34,080 7.21
Orange

Lowland Lo Dens. Conif. As' Orange 3,206 6.20 41,015 8.68

Highland Hi Dens. Hard. Bh" Black 131,867 25.56 128,729 27.23

Highland Lo Dens. Hard. Bh' Wine 14,524 2.81 19,488 4.12

Lowland Hi Dens. Hard. Bs" Purple 30,519 5.92 33,212 7.03

Lowland Lo Dens. Hard. Bs' Dark 8,586 1.66 14,310 3.03
Blue

Mixed Forest M Green 85,454 16.56 84,148 17.80

Water 3 Blue 95,420 18.5 35,147 7.43

*To convert the number of pixels to acres, an approximate formula is

Acreage = 1.09 x number of pixels.

A more accurate equation for computing the area of a parcel of land

requires the knowledges of how many scan lines are involved in cover-

ing that parcel.

Acreage = 1.104 x number of pixels + 0.453 x number of lines
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The thematic maps for the West and East parts of the Chippewa
National Forest are shown in Figures 17 and 18. A portion

of the ground truth map from the Western half west of Bow-

string Lake, has been color coded with the same code as the

automatic classifier output map. This is shown in Figure 19

for comparison.

The eight classes are represented by the colors shown in

Table II.

Conclusions:

In order to evaluate the effectiveness of automatic classifica-

tion procedures, a number of factors must be considered.

Among these are the accuracy, cost, speed, type and format

of the output data. Finally, but by no means of least import-

ance, is the usefulness of the analyzed data.

Since the accuracy of automatic photointerpretation depends
on a great variety of factors such as the number and distinc-

tiveness of the classes to be delineated and the types of

features utilized, one should view performance figures cautiously.

In general, the classification accuracy with 5 or 6 classes

ranges from 70 to 90%. Since chance performance is 16 to 20%,

one can conclude that automatic interpretation is feasible.

These performance figures are typical for distinguishing forest

types to conifer and hardwoods. Finer distinctions introduced

higher errors, for example breaking conifers into highland vs.

lowland and hi density vs. low density results in an accuracy
for these four classes of 69.7%. With four classes, chance
would result in an accuracy of 25%, thus the improvement is

not as striking.

The cost of making stratification maps automatically has to
be viewed in terms of separate tasks. For example, once
training weights have been obtained, one can generate thematic

maps very efficiently, at a cost of about one cent for 5000
pixels. However, obtaining the training weights is a costlier

operation as is the registration of the satellite with ground
coordinates. A rough estimate on the cost of stratifying the
State of Minnesota (54 million acres) is about $150,000 or

approximately three tenths of a cent an acre. This cost

would decrease rapidly for subsequent delineations as many
of the tasks become repetitive and can be automated.
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FIGURE 17. CHI PPEWA NATIONAL FOREST
THEMATIC MAP WEST, p. 49



FI GURE 18. CHI PPEWA NATIONAL FOREST
THEMAT IC MAP EAST, p. 50



FIGURE 19. GROUND TRUTH THEMATIC MAP,
CHI PPEWA WEST, p. 51



For determining the speed with which automatic classifications
can be made, one must deal with the various tasks separately.
Once the weights have been obtained, stratification maps can
be made at a rate of 10,000 acres per minute. These figures
are based on the SDS 9300 a computer with approximately 10
microseconds execution times. The time period required to
obtain new weights depends on the number of classes, number
of features and sample size. For five classes and 5000
training samples, one requires about 2 to 3 hours. The registra-
tion of satellite data with ground coordinates may take about
the same amount of time, depending on the distortions in the
data and precision of the image center coordinates.

The format of the output of an automatic classification system
is ideal for a computerized inventory system. The results of
such a classification scheme are consistent, repeatable and
unbiased. Statistics are readily available as are color coded
maps obtained on a film writer. The only human photo-inter-
pretation required is in obtaining an accurate training set.

The use of satellite data and the automatic photo-interpreta-
tion of this data is inevitable. Its use for broad area cover-
age and gross information is already widely accepted. The
acceptance of thematic maps delineated by automatic classifiers
will require additional exposure and evaluation.
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APPENDIX

Fast Fourier Transform

The Fourier Transform has been used as a tool for spectral

analysis in communication systems for many years. The

algorithm developed by Cooley Tukey* has made the digital

implementation of the Fourier Transform feasible for a large

number of sample values. Because of this Fast Fourier Trans-

form (FFT) algorithm, one is able to tackle two dimensional

image problems.

A flow chart of procedures for computing the FFT algorithm

in one dimension is shown in Figure 20. Two dimensionality
is obtained by applying the algorithm first to rows and then

to columns as shown in figure 21.

Since the signal input is an 8 x 8 array of real numbers, the

complex part of the input to the algorithm is initially set

to zero. Upon applying the algorithm, one obtains two sets

of 8 x 8 arrays comprising the real and imaginary part of

the output.

The Cooley-Tukey Algorithm is then applied to the columns of

the signal obtained from the first pass. The input consists

of both a real and imaginary 8 x 8 matrix. The output is

unscrambled by a bit reversing technique which is applied
to rows and then to columns. The unscrambling amounts to a

bit reversal as shown in the bottom line of Figure 20. The

power matrix is obtained by taking the sum of the squares

of the real and imaginary terms.

The first four terms of the output power matrix represent

the Fourier Coefficients of the first four harmonics. The

fifth term represents only one of the two fifth harmonic

sinusoidal components. The last three terms are repetitions

of term 1,2, and 3.

*Cooley, J. W. and Tukey, J. W., "An Algorithm for Machine

Calculation of Complex Fourier Series", Mathematics of

Computation, 19, 297-301 (April 1965).
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When 25 spectral components are used for features as shown
on Figures 11 and 12, the first 5 x 5 terms are used. For
16 features, the first 4 x 4 terms are used.

Figure 20. A flow diagram of the Cooley-Tukey FFT
Algorithm for Performing an Eight-Point
Transform.
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The power coefficients from the two MSS bands can be computed
simultaneously by using one band as the real input and the
second band as the imaginary input to the Cooley-Tukey flow
diagram. By appropriate unscrambling, the power coefficients
can be determined for both input signals.
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FIGURE 21 2-DIMENSIONAL COOLEY TUKEY ALGORITHM
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Fast Walsh Transform

The Fast Walsh Transform* is a texture measure which uses

square waves for basis vectors in contrast to sinusoids used

in the Fourier transform. The square wave (one minus one)

notation makes the transform particularly amenable to digital
computers.

The required procedures for the computation of the Walsh

coefficients are shown in Figure 22. For an 8 x 8 matrix,
the Hadamard matrix elements are the following:

1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

The computational method used is identical to the flow chart
which is shown forthe FFT if one replaces the Cooley-Tukey
Flow Diagram by the Hadamard Flow Diagram shown in Figure 22.

Figure 22. A flow diagram of 
F I-.

the Fast Walsh Algorithm for
performing an eight-point trans-
form. F

*Pratt, W. K. etal., "Transform Image Coding", NASA-CR-110153
Univ. of So. California, March, 1970, pp. 154.
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Figure 22 illustrates the computations performed for a one-

dimensional Hadamard transformation with eight data points.

The data points are arranged in a column at level three and

then summed by pairs to produce intermediate results for

level two. A dotted line linking two modes indicates that

the data point at the higher level is multipled by minus

one before addition, or equivalently, the data point forms the

subtrahend of a subtraction operation. Operations follow the

tree graph to level 0 which is the ordered Hadamard transform

of f(x). There are two operations performed at each node

of levels 0, 1 and 2 yielding a total of eight log 8 - 24

operations.

Similar to the FFT, the two dimensional FWT transform is

obtained by first computing the coefficients by row and then

repeating the calculation by column. The Hadamard transform

coefficients are then squared and summed to obtain the five

by five power coefficient matrix.

Slant Transform

The slant transform is a new orthogonal image transform* with

a basis vector matched to the gradual brightness changes along

image lines. This transform can be computed using a fast

computational algorithm. The computational flow chart for

the slant transform of order eight is shown in Figure 23.

The flow chart also includes the reordering of terms.

A desirable property for an image coding transform is that

the transform compact the image energy to as few of the trans-

form domain samples as possible. A high degree of energy

compaction will result if the basis vectors of the transform

matrix resemble horizontal or vertical lines of an image.

The slant vector is a discrete sawtooth waveform decreasing
in uniform steps over its length and thus is suitable for

efficiently representing gradual brightness changes in an

image line.

*Pratt, W.K. et.al, "Slant Transform for Image Coding" 1972

Proceedings Applications of Walsh Functions, March 1972

pp. 229-234. This reference is included at the end of this report.

A listing for computing an 8x8 set of coefficients follows

this reference.
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FIGURE 23 FLOW CHART FOR COMPUTING AN EIGHTH ORDER SLANT TRANSFORM
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Karhunen Loeve Transform

The objective of the Karhunen Loeve expansion (or Principal
Components Analysis) is to find a lower-dimensional represent-

ation based on the variance of the features. This is achieved

by a linear transformation described by an orthogonal matrix.

This transformation is equivalent to a rotation of the original
pattern space to a new set of coordinate vectors which are

also orthogonal and provide a means for dimensionality reduc-

tion.

For example, we can take the four MSS spectral bands and

regard these as a vector. If the number of vectors in the
training set is N, the set of N vectors constitutes a matrix

of order 4 x N. Let us call this matrix Z. Let Z' be the
matrix transpose of Z. The matrix Z Z' is a 4 x 4 square
matrix. The eigenvectors of this matrix represent the preferred

set of basis multispectral bands. If these eigenvectors are

arranged in the order of decreasing magnitude of their associated

eigenvalues, the vectors have been ordered according to their

importance. If only the first k of these eigenvectors are

used (k < 4), the residual variance is less than for any other

set of k vectors chosen by any other means. In other words,
this is the optimum expansion based on the data set itself.
The eignevectors are functions defined by the domain consist-

ing of the 4 points in the local array.

One can consider the 64 points of an 8 x 8 array from one MSS
band as the components of a vector. If these 64 points com-

posing the local image are ordered in a consistent way, the
intensity at these 64 points will form the vector. If one
considers N training samples of this vector, the set of N
vectors forms a matrix of order 64 x N. From this matrix one
can compute the covariance matrix. The covariance matrix can

be analyzed by the method of principal components. The eigen-
vectors of this matrix provide a preferred set of basis elements
for representing the local images. If one considers these

eigenvectors in the order of decreasing magnitude of their
associated eigenvalues, they will be ordered according to their
importance. This procedure was used to select the most

important 9, 16 or 25 features as shown in Figure 12.
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The Karhunen Loeve Transform provides the optimum compaction
of image energy but requires a great deal of computation.
First, the image covariance matrix must be computed. Then
the covariance matrix must be diagonalized to determine its
eigenvalues and eigenvectors. There is no fast algorithm
for this transform.

A more detailed description of this algorithm can be found
in a number of references.*

i. P. J. Ready and P. A. Wintz, IEEE Trans. on Comm.,
Vol. COM-21, #10, 1123 (1973).

2. J. M. Mendel and K. S. Fu, Adaptive, Learning and Pattern
Recognition Systems, Academic Press, New York (1970).

3. J. Spragins, IEEE Trans. Inf. Theory IT-12, 223 (1966).

4. Ya Z. Tsypkin, Fundamentals of Learning Systems Theory,
Nauka, Moscow (1970), In Russian.

5. J. Kittler and P. C. Young, Cambridge University Technical
Report, CUED B-Control/TR29 (1972).

6. Y. T. Chien and K. S. Fu, IEEE Trans. Inf. Theory IT-15,
518 (1967).

7. S. Watanabe et al., Computers and Information Sciences,
Vol. II. Academic Press, New York (1967).

8. S. Watanabe, Proc. 4th Prague Conf. on Information Theory
(1965).

9. J. Kittler and P. C. Young, Pattern Recognition, Vol. 5,
335 (1973).
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SLANT TRANSFORMS FOR IMAGE CODING*
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Introduction Shibata and Enomoto have introduced
orthogonal transformations containing a

In 1968 the conceptof coding and trans- "slant" basis vector for data of vector lengths
mitting the two dimensional Fourier transform of four and eight [6]. The slant vector is a
of an image, computed by a fast computational discrete sawtooth waveform decreasing in
algorithm, rather than the image itself, was uniform steps over its length, and is suitable
introduced [1,2]. This was followed shortly for efficiently representing gradual brightness
thereafter by the discovery that the Walsh- changes in an image line. Their work gives
Hadamard transform could be utilized in place no indication of a construction for larger size
of the Fourier transform with a considerable data vectors, nor exhibits the use of a fast
decrease in computational requirements [3]. computational algorithm. In order to achieve
Investigations then began into the application of a high degree of image coding compression
the Karhunen-Loeve [4] and the Haar [5] trans- with transform coding techniques, it is
forms for image coding. The Karhunen-Loeve necessary to perform the transformation in
transform provides minimum mean square er- two dimensions over block sizes of 16 x 16
ror coding performance but does not possess a picture elements or greater [7] For large
fast computational algorithm. On the other block sizes, computation is usually not feas-
hand the Haar transform has the attribute of an ible unless a fast algorithm is employed.
extremely efficient computational algorithm,
but results ih a relatively large coding error. With this background an investigation was
None of the transforms mentioned above, how- undertaken to develop an image coding slant
ever, has been expressly tailored to the char- transform matrix possessing the following
acteristics of an image. properties:

A desirable property for an image coding 1. orthogonal set of basis vectors.
transform is that the transform compact the 2. constant basis vector.
image energy to as few of the transform do- 3. slant basis vectors.
main samples as possible. Qualitatively speak- 4. sequency property.
ing, a high degree of energy compaction will 5. variable size transformation.
result if the basis vectors of the transform- 6. fast computational algorithm.
ation mrratrix "resemble" typical horizontal or 7. high energy compaction.
vertical lines of an image. If one examines the
lines of a typical monochrome image, it is The following sections describe the construc-
found that a large number of the lines are of tion of the slant transformation matrix, pre-
nearly constant.grey level over a considerable sent a fast computational algorithm for its
length. The Fourier, Hadamard, and Haar computation, discuss its image coding per-
transforms possess a constant valued basis formance, and provide examples of its use
vector that provides an efficient representation for coding monochrome and color images.
for constant grey level image lines, while the
Karhunen-Loeve transform has a nearly cons- Slant Transform Construction
tant basis vector suitable for this representa-
tion. Another type of typical image line is the For a vector length of N = 2 the slant
line that linearly increases or decreases in transform is identical to the Hadamard trans-
brightness over the length. None of the data form of order 2. Thus,
transforms previously mentioned possess a 1 1
basis vector that efficiently represents such [S2 (1)
image lines.

*:This work was supported by the Advanced Research Projects Agency of the Defense and was moni-
tored by the Air Force Eastern Test Range under Contract No. F08606-72-C-0008.
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The slant transform matrix for N = 4 can be
written as

1 0 0 0 1 I 0 0 1 0" 0 1
1 a+b a-b -a+b -a-b 0 o o 0 0 1 1 0 1 1 0

[S (2) 17)
4 0 1 -1 -1 (2) 0 1 0 0 -

a-b -a-b a+b -a+b o o o -1 0 1 -1

where a and b are real constants to be deter-
mined subject to the conditions that S4 must be
orthogonal and that the step size of the slant If S4 is post multiplied by a column data vector,
basis vector must be the same throughout its the first computational pass requires 4 addi-
length. The step size between the first two tions, the second pass requires 2 multiplica-
elements of the slant vector is tions (the two elements 1/3) and the final pass

requires 4 multiplications including the norm-
(a+b) - (a-b) = 2b (3) alizing factor of 1i/r4. The total computational

requirements are 8 adds and 6 multiples. For
and the step size between the second and third purposes of comparison a fourth order Hada-
elements is mard transform requires 8 adds and 4 multi-

(a-b)- (-a+b) = a - 2b (4) ples. Figure 1 contains a flow chart of the

computational operations for S 4.
Hence,

a = 2b 1000 001

The slant matrix of order four may then be f() F(1)
reformed as

- 1  1 , oo o"o2
1 I 3b b -b -3b (/3 F(2)

4 7 (5)
1 -1 -1 1 ooo1 ,oo-,

b -3b 3b -b 1 / F(3)

By the orthogonality condition 0T00( ~1o" - f/---
-f(/).. F(4)

3b b -b -3bj $. [3b b -b 3b] 1

it is found that Figure 1. Slant transform of order 4 -compu-
tational flowchart.

1 2
b = a = An extension of the slant matrix to its next

Thus, the slant matrix becomes size increment S 8 is given by

3 1 -1 -3 3 a 03-1 -l -3 0 0 1 0 10 0 1 . 1 - -

L S 4 0 b) as, ] - o o o o 

0 1 0 0 0 .1 0 1.1 1-3 3 -1 °-bs °8 b8 . o ] 1 o -3

00 0 10 0 0

~0 0 0 0 1 1 -3 -1
It is easily shown that S4 is orthonormal. 7 795
Further note that S 4 possesses the sequency
property; each row has an increasine number where ag and b8 are constants to be determin-
of sign rvcrsals from 0 to 3. The fast comp- ed to satisfy the slant and sequency properties.
utaonal property o S is apparent from the In S8 the slant vector is obtained by a simpleutatIonal property of S 4 is apparent from the scaling operation on 54. The remaining terms
mnal trix decomposition scaling operation on S4. The remaining terms

in eq. (8) are introduced to obtain the sequen-
cy and orthogonality properties.

Equation (8) can be generalized to give
the slant matrix of order N in terms of the
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slant matrix of order N/2 by the following con- that many of the mid-sequency basis vectors

struction. are identical for the two transforms.

SEOUENCY

]- 1 ' : ,----- --- -

S---------------
L

where I represents a 2 X 2 identity matrix. To
determine the coefficients (aN, bN), one pro-
cc.eds as follows: The first row is a constant

SN(li ) = --------- 

7ne second row (the slant vector) is a linear
function of the column index which is ortho- -- --- --

eonal to the first row. It must therefore be of
thile form - ---

SN(Z,i) = xN(N-+--2i) -

Now, by the recursion indicated in eq. (9), for ----- ---

1 1 i.---------
Sz(2Z, i) = azNSN(1, i) + 7 bZNSN(Z, i)

O.r 1

1 XN I
x2N(2N+1-Zi) a2 + b2N (N+I-Zi)

From this one obtains N -

- b
xZN N 5

a -N N 3/2
N N XZN

a n d b y in d u c tio n N -I IN

aZN =Zb a - __P U 1 I. LD K__3

Since SN(,) and SN(2, ) are orthogonal unit
vectors in N dimensions and S2N( 2 ,.) is a unit
vector in ZN dinmensions, the above recursion

imrpies
2 2 ----- J ---

1S2N ()1 N + bZN ---

These two relations can be used to obtain the
coefficients, (aN, bN) recursively: -

1 14

b 1/ +4a ---- --
ZN N -- --

aZN = 2bzNaN

Figure 2 contains a superimposed plot of
the Walsh-Hadamard and Slant basis vectors

Figure 2. Comparison of Walsh-Hadamardfor a vector length of sixteen for the con- and Slant basis vectors of length
struction of eq. (9). It is interesting to note 16.
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Slant Transform Properties the best energy compaction for the Markov
source.

Let [fl be a column data vector and iF]
its slant transform obtained by the operation 10

[F! = [sl][f] (10)

Consider [f] to be a sample of a vector ran-
dom process with known mean [f] and with a
known covariance matrix

[Cfl = ([f] - [If)([f [ (11) I

where the overbar indicates a statistical aver-
age. The covariance matrix of the Slant trans- w FOURIER
form [F is found to be [81 SLANT

[C T = [SN[Cf][S () HADAMARD

> / HAAR
Equation (12) can be considered a two dimen- 0.1
sional Slant transformation of the data covar-
iance matrix for purposes of computation.
Figure 3 contains a perspective view of the

KARHUNEN-LOEVE

CxIX,,X 2 }= (0.95)ix I-xI
4 I I I I I

0. 0 2 4 6 8 10 12 14
TRANSFORM DOMAIN VARIABLE, 4

Figure 4. Transform domain variance, vector
length = 16, element correlation =
0. 95.

Slant Transform Image Coding

Let [f(x,y)1 represent the brightness
samples of an N by N element image. The two
dimensional Slant transform of the image is
given by

[F(u,v)] = [SNI[f(x, y)][SNI

Figure 3. Perspective view of Slant trans- In effect, the pre-multiplication of [f(x,y)] by
form covariance matrix-Markov [SN] performs a one dimensional slant trans-
process data vector, p = 0. 95, form of each column of the imagze matrix, and
N = 256. the post-multiplication by [SN1 performs a

one dimensional transform of the rows of the
Slant transform of a data vector of length N = image. Figure 5 contains a photograph of a.
256 with a Markov process covariance of the 256 by 256 element image with 64 grey levels
form and its two dimensional Slant transform.

[f] = p Ixi-xjl A bandwidth reduction can be obtained
with the Slant transform by efficiently quantiz-

where p is the correlation of adjacent ele- ing each transform domain sample. There
ments [f'l. Figure 4 is a plot of the variance are two basic strategies for the quantization
of the Slant transform samples as a function process - zonal and threshold quantization.
of sequency. The variance function§ for the In the former, various zones are established
Walsh-Yadamard, Fourier, Haar, and Kar- in the transform domain, and each sample in
kunen-Loeve transforms are included for the zone is coded with the same number of
comparison. It is seen that the variance func- bits set proportional to the expected variance
tion for the Slant transform is reasonably of the samples within the zone. With thres-
close to the variance function of the Karhunen- hold quantization a threshold level is establish-
Loeve transform, which is known to provide ed and only those transform domain samples
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whose magnitude are greater than the thres-

hold are coded.

MAXIMUM VARIANCE
ZONAL FILTER
4:1 SAMPLE REDUCTION

4%

X, *

YC .95

0

(a) 2/

Z 2%_ FOURIER TRANSFORM

HAAR TRANSFORM

HADAMARD TRANSFORM

K-L TRANSFORM
x " .7 (co rre l. co e ff. = .9 5 )

SLANT TRANSFORM

I 2x2 4x4 8x8 16xl6 32x32 64x64 256x256
BLOCK VALUE 128x128

(b) Figure 6. Mean square error performance

of image transforms as a function

of block size for low pass zonal

Figure 5. Slant transform of an image:(a) quantization.

original; (b) transform threshold

display. but the Slant transform results in only a
slightly greater error. Also to be noted is

Figure 6 presents a statistical evaluation that the rate of decrease in mean square error

of the coding performance of the Walsh-Hada- for larger block sizes becomes quite small

mard, Karhunen-Loeve, and Slant transforms after a block size of 32 by 3Z2 elements.

for a forn- of zonal quantization in which the

transform domain samples in a zone are cod- Several computer simulations have been

ed with six bits per sample and samples out- performed to evaluate the Slant transform for

side the zone are discarded. The zone is de- image coding. Figure 7 shows image recon-

fined to contain the transform domain samples structions for the Walsh-Hadamard, Karhunen-

with the largest expected variance, and is Loeve, and Slant transforms for zonal quanti-

adiusted to include 2 5%c of the total number of zation employing eight zones and coding with

transfor domain samples. Images coded an average of only 1.5 bits per element. Sub-

with this systemn require an average coding of jectively, the Slant transform results in much

1. 5 bits rer element. Figure 6 plots the less degradation than the Walsh-Hadamard

mean square error resulting from this quanti- transform and only slightly more than the Kar-

za'ion process as a function of the size of the hunen-Loeve transform. Similar experiments

image block transformed. From the figure it have been performed for color images, and it

is seen that the Karhunen-Loeve transform has been found that a color image can be cod-

provides the minimum mean square error, ed with about 2. 0 bits per element with
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negligible degradation using the Slant trans- Summary
form.

A new orthogonal image transform with a
basis vector matched to gradual brightness

S" changes along image lines has been developed.
'' The transform can be computed using a fast

computational algorithm, and requires only a
few more operations than the Walsh-Hadamard
transform. A statistical analysis indicates
that the Slant transform provides a smaller
mean square error for image coding than the
Walsh-H-adamard transform and a slightlyS. greater error than the Karhunen-Loeve trans-
form. The analytic image coding performance
predictions are verified by computer simula-
tions of image coding processes for mono-
chrome and color images.
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